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Abstract
In this work we discuss a class of nonlinear covariant gauges for Yang–Mills
theories which enjoy the property of being multiplicatively renormalizable to
all orders. This property follows from the validity of a linearly broken identity,
known as the ghost Ward identity. Furthermore, thanks to this identity, it
turns out that the local composite dimension two gluon operator Aa

µAa
µ can be

introduced in a multiplicatively renormalizable way.

PACS numbers: 11.10.Gh, 11.15.−q

1. Introduction

According to the Faddeev–Popov procedure, the quantization of gauge theories requires a
choice of the gauge fixing to get rid of spurious degrees of freedom. This choice does not
affect physical quantities since they correspond to gauge invariant operators. After choosing
a gauge, one has to prove the renormalizability of the theory, in order to consistently define
it at the quantum level. Moreover, in addition to the BRST invariance, and depending on the
choice of the gauge fixing, the resulting theory might display further global symmetries which
reduce the number of free parameters present in the gauge fixing term.

In this paper we present a covariant nonlinear gauge fixing which enjoys the property
of being multiplicative renormalizable, while containing a unique gauge parameter α. This
feature stems form the existence of an additional global symmetry amounting to perform
a constant shift of the Faddeev–Popov ghost field c, provided there is a compensating
transformation of the Lagrange multiplier field b. This additional invariance gives rise
to a linearly broken identity, known as the ghost Ward identity [1], which ensures the
renormalizability of the theory. An interesting feature of this nonlinear gauge is that it
allows for the introduction of the local dimension two operator Aa

µAa
µ, which turns out to be

multiplicatively renormalizable too. This provides an example of a nonlinear gauge which
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allows for the introduction of the operator Aa
µAa

µ, which has attracted much attention in recent
years.

Although in this paper the quantization of the gauge theories is achieved through the
introduction of a gauge fixing, it is worth mentioning that the approach based on the exact
renormalization group has been proven to be a useful tool in order to obtain a manifestly
gauge invariant formulation of Yang–Mills theories, without the need of a gauge fixing; see,
for instance, [2–4] and references therein.

The work is organized as follows. In section 2 we introduce the nonlinear gauge fixing,
and we derive the set of Ward identities. In section 3 we prove the renormalizability of the
model within the framework of the algebraic renormalization [5]. In section 4 we consider
the inclusion of the dimension two composite gluon operator Aa

µAa
µ and we establish its

multiplicative renormalizability. Finally, the conclusions are displayed in section 5.

2. Gauge fixing

The Yang–Mills action in four-dimensional Euclidean spacetime is

SYM = 1

4

∫
d4xF a

µνF
a
µν, (1)

with the field strength given by

Fa
µν = ∂µAa

ν − ∂νA
a
µ + gf abcAb

µAc
ν, (2)

where g is the coupling constant and f abc are the structure constants of SU(N), the colour
index a belongs to the adjoint representation, a = 1, . . . , N2 − 1.

To quantize the action (1), we follow the BRST procedure and we introduce the Faddeev–
Popov ghost and antighost fields, respectively, ca and c̄a , as well as the Lagrange multiplier
ba . We require invariance of the gauge fixed action under the nilpotent BRST transformations

sAa
µ = −Dab

µ cb, sca = g

2
f abccccc,

sc̄a = ba, sba = 0,

(3)

where the covariant derivative is defined as

Dab
µ = δab∂µ − gf abcAc

µ. (4)

We also impose that the gauge fixed action,

S = SYM + Sgf , (5)

obeys the integrated ghost equation

GaS =
∫

d4x

(
δS

δca
+ gf abcc̄b δS

δbc

)
= 0, (6)

which expresses in a functional form the existence of an additional global invariance,
corresponding to a shift of the ghost field by a constant together with the compensating
transformation of the Lagrange multiplier ba [1]. Thus, the most general gauge fixing term
compatible with both BRST symmetry (3) and ghost equation (6) is found to be

Sgf = s

∫
d4x c̄a

(
∂µAa

µ +
α

2
ba +

α

2
gf abcc̄bcc

)
=

∫
d4x

[
ba

(
∂µAa

µ +
α

2
ba + αgf abcc̄bcc

)
+ c̄a∂µDab

µ cb +
α

4
g2f abcf cdec̄a c̄bcdce

]
. (7)
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Table 1. Dimension and ghost number of the fields and sources.

Fields/sources A c c̄ b � L

Dimension 1 0 2 2 3 4
Ghost number 0 1 −1 0 −1 −2

In order to write down the Ward identities fulfilled by the gauge fixed action, we introduce
two external sources, �a

µ and La , coupled to the nonlinear BRST transformations [5]. Thus,
for the complete starting action � we get

� = SYM + Sgf + Sext, (8)

where

Sext = s

∫
d4x

(−�a
µAa

µ + Laca
)

=
∫

d4x

(
−�a

µDab
µ cb +

g

2
f abcLacbcc

)
. (9)

As it is easily checked, the action � obeys the following Ward identities:

• the Slavnov–Taylor identity

S(�) =
∫

d4x

(
δ�

δ�a
µ

δ�

δAa
µ

+
δ�

δLa

δ�

δca
+ ba δ�

δc̄a

)
= 0, (10)

• the linearly broken integrated ghost Ward identity

Ga� = �a
cl, (11)

where

�a
cl = gf abc

∫
d4x

(
�b

µAc
µ − Lbcc

)
, (12)

is a classical breaking [1] linear in the fields and Ga is given by (6).
For further use, the quantum numbers of the fields and sources are displayed in table 1.

3. Renormalizability of the model

Let us discuss now the renormalizability of the action (8). Following the framework of the
algebraic renormalization [5], we shall look at the most general invariant local counterterm
�c compatible with the Ward identities characterizing the model. From equations (10)
and (11) it follows thus that �c fulfils the following constraints:

B��c = 0, (13)

Ga�c = 0, (14)

where B� is the nilpotent linearized Slavnov–Taylor operator

B� =
∫

d4x

(
δ�

δ�a
µ

δ

δAa
µ

+
δ�

δAa
µ

δ

δ�a
µ

+
δ�

δLa

δ

δca
+

δ�

δca

δ

δLa
+ ba δ

δc̄a

)
. (15)
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From the general results on the cohomology of Yang–Mills theories (see [5] and references
therein) it follows that the most general solution of equation (13) can be written as

�c = a0SYM + B��−1, (16)

where �−1 is an integrated polynomial in the fields and sources, with dimensions bounded by
four and negative ghost number, namely

�−1 =
∫

d4x

(
a1∂µc̄aAa

µ + a2L
aca + a3

α

2
c̄aba + a4

α

2
gf abcc̄a c̄bcc + a5�

a
µAa

µ

)
, (17)

where a0, a1, a2, a3, a4, a5 are free coefficients. Furthermore, from the equation (14), it follows
that a4 = −2a3 and a2 = 0. Thus, the most general invariant counterterm turns out to contains
four free parameters, a0, a1, a3, a5, being given by

�c = a0SYM + B�

∫
d4x

[
a1∂µc̄aAa

µ + a3
α

2
c̄a(ba − 2gf abcc̄bcc) + a5�

a
µAa

µ

]
. (18)

After having characterized the most general counterterm, it remains to check the stability of the
action (8), amounting to prove that the counterterm �c can be reabsorbed by a multiplicative
redefinition of the parameters, fields and sources of �, according to

�(�, J, ξ) + ε�c(�, J, ξ) = �(�0, J0, ξ0) + O(ε), (19)

with

�0 = Z
1/2
� �, � ∈ {A, c, c̄},

J0 = ZJ J, J ∈ {�,L},
ξ0 = Zξξ, ξ ∈ {g, α}.

(20)

In fact, by direct inspection one finds

Z
1/2
A = 1 + ε

(a0

2
+ a5

)
,

Z1/2
c = Z

1/2
c̄ = 1 − ε

a1

2
,

Zg = 1 − ε
a0

2
,

Zα = 1 + ε(a0 + 2a1 + a3)

(21)

and

Z
1/2
b = 1 − ε

(a0

2
+ a1

)
= ZgZc,

Z� = Z−1
g Z

−1/2
A Z−1/2

c ,

ZL = Z−1
g Z−1

c ,

(22)

thus establishing the multiplicative renormalizability of the action �.

4. Inclusion of the dimension two gluon operator

Let us discuss now the inclusion of the dimension two gluon operator Aa
µAa

µ in the case of the
nonlinear gauge (7). According to [6–8], we add the operator Aa

µAa
µ to the action (8) through

the following term:

SLCO = s

∫
d4x

(
λ

Aa
µAa

µ

2
+

ζ

2
λJ

)
,

=
∫

d4x

(
J

Aa
µAa

µ

2
+ λAa

µ∂µca +
ζ

2
J 2

)
, (23)
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Table 2. Dimension and ghost number of the LCO sources.

LCO sources λ J

Dimension 2 2
Ghost number −1 0

where λ and J are external sources introduced as a BRST doublet

sλ = J, sJ = 0. (24)

The quantum numbers of the external sources are displayed in table 2. The dimensionless
parameter ζ is needed in order to take into account the ultraviolet divergences present in the
Green function 〈A2(x)A2(y)〉 [6–8]. The action we will work with is now given by

�′ = � + SLCO, (25)

where � stands for expression (8). The introduction of the operator Aa
µAa

µ does not affect the
BRST symmetry and the ghost equation. In fact, the modified action �′ obeys the following
Slavnov–Taylor identity

S(�′) =
∫

d4x

(
δ�′

δ�a
µ

δ�′

δAa
µ

+
δ�′

δLa

δ�′

δca
+ ba δ�′

δc̄a
+ J

δ�′

δλ

)
= 0, (26)

while the ghost equation (11) remains unaffected,

Ga�′ = �a
cl, (27)

with Ga and �a
cl given, respectively, by (6) and (12).

The multiplicative renormalizability of the action (25) can be established in the same way
as that of the action (8). For that, one looks at the most general invariant counterterm �̃,
which is an integrated polynomial in the fields and sources with dimension bounded by four
and with vanishing ghost number. From the Slavnov–Taylor identity (26), it follows that �̃

can be written as

�̃ = a0SYM + B′
��−1, (28)

where �−1 reads

�−1 =
∫

d4x

(
a1∂µc̄aAa

µ + a2L
aca + a3

α

2
c̄aba + a4

α

2
gf abcc̄a c̄bcc + a5�

a
µAa

µ

+ a6
λ

2
Aa

µAa
µ + a7

ζ

2
λJ + a8c̄

aca

)
, (29)

and B′
� is the linearized nilpotent operator corresponding to the Slavnov–Taylor identity (26),

namely

B′
� =

∫
d4x

(
δ�′

δ�a
µ

δ

δAa
µ

+
δ�′

δAa
µ

δ

δ�a
µ

+
δ�′

δLa

δ

δca
+

δ�′

δca

δ

δLa
+ ba δ

δc̄a
+ J

δ

δλ

)
. (30)

Moreover, the ghost identity (27) implies that �̃ is constrained by

Ga�̃ = 0, (31)

from which it follows that a2 = 0, a4 = −2a3 and a8 = 0. Thus, for the final form of the
counterterm we get

�̃ = a0SYM + B′
�

∫
d4x

[
a1∂µc̄aAa

µ + a3
α

2
c̄a(ba − 2gf abcc̄bcc)

+ a5�
a
µAa

µ + a6
λ

2
Aa

µAa
µ + a7

ζ

2
λJ

]
. (32)
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As done in the previous section, we have to check that the counterterm �̃ corresponds to a
redefinition of the fields, sources and parameters of the action �′. In fact, it turns out that
the action (25) is multiplicatively renormalizable. The renormalization of the fields, BRST
sources and coupling constant are given as in equations (20)–(22). Also, the parameter ζ and
the sources λ, J renormalize as

ζ0 = Zζ ζ,

λ0 = Zλλ,

J0 = ZJ J,

(33)

with
Zζ = 1 + ε(2a0 − 2a6 + a7),

Zλ = 1 + ε

(
−a0

2
+

a1

2
+ a6

)
= Z−1

g Z−1
c ZJ ,

ZJ = 1 + ε(a6 − a0).

(34)

Note, in particular, that the source J , and thus the composite operator Aa
µAa

µ coupled to it,
displays multiplicative renormalizability.

5. Discussion and conclusions

In this work we have discussed a class of nonlinear covariant gauges characterized by
the validity of the integrated broken ghost Ward identity [1]. This identity, together with
the Slavnov–Taylor identity, has enabled us to prove the multiplicative renormalizability of
the theory, a feature which has been established to all orders of perturbation theory by means
of the algenraic renormalization [5]. Further, we have been able to introduce the dimension
two gluon operator Aa

µAa
µ, while maintaining the renormalizability of the model.

The example of the covariant linear gauges presented here enlarges the number of gauges
for which a local dimension two operator can be introduced in a multiplicatively renormalizable
way. Such a dimension two operator can be, in fact, introduced in many gauges, namely the
Landau gauge [6–8], the linear covariant gauges [9], the Curci–Ferrari gauge [10], the maximal
Abelian gauge1 [11, 12] as well as in a variety of interpolating gauges [12, 13].

Although the operator Aa
µAa

µ is not gauge invariant, the property of being multiplicatively
renormalizable in a rather large number of gauges can be interpreted as evidence in favour of its
relevance for the infrared behaviour of the gluon propagator. It is worth reminding here that the
condensate

〈
Aa

µAa
µ

〉
is in fact directly related to the appearance of an effective dynamical gluon

mass, a topic which is receiving increasing attention in recent years [6, 14–23]. Finally, let us
mention that the issue of the quantization of Yang–Mills theories in nonlinear gauges has also
been investigated from other viewpoints. For example, in [24] one finds a detailed analysis of
the nonlinear Curci–Ferrari gauge within the framework of the Schwinger–Dyson equations,
where the gluon propagator has been found to the suppressed in the infrared. Recently, a
potential application of these gauges on the lattice has been advocated in [25].

Acknowledgments

The Conselho Nacional de Desenvolvimento Cientı́fico e Tecnológico (CNPq-Brazil), the
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